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ABSTRACT

Th€ primary objective of this study is to derive a math-

ematical model to predict the detection probaaility of a

target which noves randomly, according to a two-dimensional

diffusion model. This model assumes that there is a

stationary searcher which has a "cookie-cutter" sensor with

radius R. In order to construct this model, a Monte Carlo

simulation program is used to generate detection probabili-

ties. It is demonstrated that this model can be used

asymptotically to predict an upper bound detection prob-

ability of an "equivalent" random tour target.
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I. DESCRIPTION OF THE DIFFUSION MODEL

A. INTRODUCTION

The main objective of this thesis is to find and test an

experimental mathematical model which predicts the prob-

ability of detecting a two-dimensional target by a

stationary searcher. This model will be shown tD provide an

upper bound for the probability of detection by a stationary

searcher of a target conducting a "random tour" [Ref. 1]

B. DESCRIPTION OF DIFFUSION MODEL

1- The Searcher Location

The searcher is assumed to be located in the center

of a square search region of area A. This location is held

fixed during the search period. The searcher has a detec-

tion capability over a disk of radius R. The detection

probability of a target inside of this disk is 1 and outside

is . The searcher thus h as a "cookie— cutter" sensor with

detection range R. [Ref. 2

]

2- The Target Starting Position

The target's starting position is uniformly

distributed over the square search region A.

3* Motion of the Targe t

In our diffusion model, the target moves randomly

over the area A as a diffusing particle which reflects off

tne area boundaries. The diffusion constant is D, which has

dimensions of area per unit of time. In any time interval

of length At that does not contain a boundary reflection,



components of the target's position on the X and Y axes

suffer increments which are independent of all previous

increments and which are eacn distributed normally with mean

and variance D^t.

Still ignoring boundary effects, the diffusion

assumption results in the target's location at time t naving

a circular bivariate normal probability distribution with

mean of the starting position and variance of Dt.

Thus the probability density of the target's loca-

tion at time t is

f[x,Y,t) = -IWW expk j^ (1.1,

where (Ux ,U
y ) is the target's starting position. Adding

the effects of boundary reflection significantly complicates

the calculation of f(x,y,t) and leads to the necessity of

using simulation to attack this problem.

4. Detection

Detection occurs whenever the target enters the

searcher circular detection disk which has a radius R.

C. DIFFUSION SIMULATION MODEL (DIFSIM)

A Monte Carlo simulation computer model (DIFSIM) is used

to genarate detection probabilities for this diffusion

model. This program is written in FORTRAN and designed for

use at the Naval Postgraduate School(NPGS) . It uses the new

version of the NP3S Random Number Genarator Package, called

LLRANDOMII in order to generate Jniform and Normal random

numbers.

10



1 . Inputs

• Area size, A, in scuare nautical miles.

• Diffusion constant, D, in square nautical miles per

hour.

• Radius of detection iisk, R, in nautical miles.

• Number of replications.

• Detection period as an hour.

• Time increment, Z\t, tor each discrete step in minutes.

2« functioning of Program

The initial target position is selected from a

bivariate uniform distribution over the search region A.

Subsequent target positions are determined by a discrete

approximation of the diffusion. We make the following defi-

nitions,

X=x component of current location

Y=y component of current location

X , = x component of new location at the end

of time increment At

Y'=y component of new location at the end

of time increment At

Then,

X'=X+6
x
(DAt)'/a

Y' = Y + QtDAt)'^

where 6^ and 6L are drawn independently from a standard normal

distribution.

In this model a 5 minutest is used. Different time

increments, varying from 1 minute up to 15 minutes, have

11



been tested and 5 minutes has been accepted as a good value.

For smaller time increments the simulation program took too

long in computer execution time. As shown in Figure 1.1

there is no significant difference in probability curves

between 5 minute increments and smaller time increments.

12
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When the target encounters a boundary, i reflect^o:.

is made to keep the target insile tne search area. The

target's Y' position after a reflection is given as follows:

Y'< => Y' becomes -Y

'

Y'> a => Y' becomes 2a-Y

'

where a is the length of a side of the square search area A.

The target reflects in the X direction in a similar manner.

Detection occurs whenever the target enters the

detection disk. This event can be defined analytically as

follows

:

(X--2-) 2
* (?"Y)

2 - R2

3. Cutput

N
fl
/NT

For each time t, the simulation output is the ratio

where

N =nuicbei: of replications giving a detection by time t,

N
T
=total number of Monte Carlo Replications used in the

simulation.

14



1

Figure 1.2 Diffusion Model.
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II. CONNECTION BETWEEN RANPQH TOUR AND DIFFUSION MODEL

A. DESCRIPTION OF RANDOM TOOR MODEL

In the raQdom tour model considered here, the target is

assumed to move at a constant speed and to make course

changes at random times. Each new course is drawn from

uniform distribution on [0,2fT]. The lengths 3f the time

between course changes is exponentially distributed with

mean 1/A-

An analytic expression for the probability density of

the target's position after a random tour of length t was

derived in [Ref. 1] Given the target's initial position at

the origin of a two-dimensional coordinate system, this

expression is

g(x,y,t)=-2m
--

tji 7P^~
exp (~* t{ ^'f^fy +ex p~^(S (S

~
1

}

)
(2.1)

V=target speed (nautical mile in per hour)

A=course change rate (hrs )

t=time (hrs)

5 (vif

The Dirac §_function component of g(x,y,t) arises from

the fact that with probability e the targat does not

finish the first step by time t. In other words, the target

makes no course change through time t. Therefore, its prob-

ability mass is concentrated on the boundary of a disk of

radius vt and centered at the origin.

16



E. CCEKECTIOK BETBEEK EANDOM TODE kUD DIFFUSION MODELS

Let F. denote the ::^ui :'j. '. a nee of the target fro: th<

origin at time t. Then

R2=X2+Y2

The expression for E[R 2
] for the random tour model was

derived in [Ref. 3 ] as follows:

E[E 2

]=/J
(x2ty2) g(x,y,t) dxdy

0<x2 + y 2< (vt) 2

(2.2)

Substituting (2.1) into (2.2) and transforming to polar

coordinates, ve obtain

XT N/i

2i =E[R^] =
3 e

-At

2ir(Vt) 2

Vt

- 1 +

1-

Setting x=r/vt / we have

E[R2
] = e"

At
(Vt) 2 /x 3

• 6(x-l)

ft

exp/u./l-,'
Vt

Vdrde

\

/It) )

dx

= e-
At

(Vt) 2Jl + At

l-x<

exp / At/l-x 2

f
dx (2.3)

17



To 4
ar:orr the integration in (2.3), w< set u=Jl-y

2
.

C
! i V V. S

A t e xcd j A t i 1-xM dx

1-x

=At (1-u 2
) expj AtuJ du

U
Xt n

1 / ^ y-1 -
| y e- dy

2e
At

(At)

(At -1 + e
At

)
-

(At)

From (2.3) ana (2.4) we then have

(2.4)

v -At
E[R Z

] = 2 —(At - 1 + e )

A z

2V 2
t 1- 1-e

-At

At
(2.5).

In the calculation of E[

R

2
] for diffusion model with

diffusion constant D , the target's initial position is

assumed to he at the origin of a two-dimensional coordinate

system. V.e have

E[H2]=E[X2+Y2 ]=E[X2 ]+E[Y2 ] (2. 6)

18



Since X and I are independent and uncorrela ted, they have

normal marginal distributions. So,

X~w (0,Dt)

Y~N(0,Dt)

and

E[ X2]=var[ X ]+ (E[X]) 2=Dt + 0=Dt

E[ Y2]=var[ Y ]+ (E[Y]) 2=Dt + 0=Dt

If we substitute these E[X 2
] and E'L Y 2

] values into (2.6), we

get

E[ R 2
]
= E[X 2 ]+E[ Y 2 ]=Dt+Dt=2Dt (2.7)

As described in [Ref. 3] for tae random tour model, as t

goes to infinity the Central Limit Theorem requires that

9(x»V/t) becomes asymptotically circular bivariate normal

with mean p =0 and variance cr 2=Vt/^. This result can be

obtained by using the formula (2.5) and letting t go to

infinity.

2V\ M l-e 2V*t
A

(1 "

—> co t— > <=*=>

lim E[R 2
] = Lim r (1 r-r )= r (2.6)

A At A

By comparing the equations (2.7) and (2.8), it is seen

that as t becomes large, a random tour can be approximated

by a diffusion with diffusion constant

v
2

D= (2.9)

A

To examine the relationship between a random tour and

its "equivalent " diffusion, two simulations were used.

Example results of these two simulation programs, DIFSIM and

19



PASS are displayed in Figure 2. 1. 33th programs are Monte

Carlo search simulations. For PASS (Passive Acoustic

Submarine Simulation), [Ref. 4] the target motion model is a

random tour. In DIFSIM (Diffusion Simulation), the target

moves as a diffusing particle. In both cases, the searcher

is stationary at the center of a 100 na x 103 nm search

area and has a cookie_cat ter sensor with detection range

15nm. The target reflects off the area boundaries. Ihe

initial target position was selected uniformly over the

search area, and each replication of the simulation was

allowed to continue until the target moved within distance

15 nm of the searcher.

To generate the results shown in Figure 2.1 , the

following 5 different pairs of A and V are used as a rate of

course change and speed of target in the PAS5 simulation

model

.

's.0\ MO. (A [15.0 \ /20.o\ /25.o\ /nm/hr\

^25j, \1.0/ , \2. 25/, \»-0/ , \6.2Sj \ 1/hr/

If we use equation (2.9), we may get an "equivalent" diffu-

sion constant 100 nm 2/hr, by using each different (A#'0

pair. Thus 100 nm 2/hr is used as a diffusion constant in

the DIFSIM in order to get an "equivalent" diffusion model.

As demonstrated, detection probabilities are asymptoti-

cally very close to each other as t increases. But during

the early search hours, detection probabilities for a diffu-

sion model are higher than the probabilities which are

generated by the random tour model.

If we recall the the equations (2.5) and (2.8) we will

see that

2V t
E[R2]< =2Dt

A

20



Thus the approximation of E[E 2
] for the random tour

model using the diffusion model always leads to an

0YBBES1IHATE of E[R 2 ].

In the diffusion model we ma/ expect that the target

will move a greater distance from the origin taan does the

target in the "equivalent" random tour modei. It is there-

fore reasonable to expect that the diffusing target will

encounter a stationary searcher more quickly than will a

target conducting an "equivalent" random tour. This conjec-

ture has been supported by further simulation testing; also

supported is the fact that the two processes are asymptoti-

cally identical.

An experimental analytical modei will be constructed for

the diffusion model in the next section.

21
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III. ESTABLISHMENT OF THE AN A^XXICAL MODEL

In this chapter, and with simulation results from DIFSIM,

an experimental analytical model will be constructed for

predicting the probability of a diffusion target entering a

stationary disk by seme time t.

A. ASSUMPTIONS

The following assumptions are used in our model

•The searcher is fixed at the center of a square search

region of area A.

•The searcher has a detection capability ovec a disk of

radius E with a detection probability of 1 within the

disk and outside. (i.e, a cookie-cutter detector).

•The target's starting position is uniformly distributed

over a search region A.

•The target moves randomly over the area A as a diffusion

particle with diffusion constant D.

• The target reflects off the area boundaries.

•A target can be detected only once by the searcher

B. CLASSIFICATION OF THE VARIABLES

The variables in our model are,

•First detection probability, P.

•Search area, A (nm 2
) .

•Searcher detection disk radius, R (nm)

.

•Target diffusion constant, D (nm 2 /hr)

.

23



• Time, t (hr) .

The first detection probability, P, is the dependent vari-

able. The regaining variables A,R,D and t are independent.

That is.

?= f(A,R,D,t)

C. CONSTRUCTION OF THE MODEL

Figure 3.1 shows four plots of the prooaDility of a

target detection by time t as estimated by the Monte Carlo

simulation DIFSIM. If we look at these curves, we will

observe that all of them have an increasing trend and they

approach 1 asymptotically. It also appears as if the second

derivative must be negative everywhere. Figure 3.2 plots 1

minus the same data on a log scale. The fact that these

plots are very nearly linear suggests the following func-

tional form P (t)

.

P(t) = 1-<xe~ P (3. 1)

where ex and p are determined by the problem parameters E, A

and D. After conducting 23 separate simulations with

different values of R,A and D, the author is convinced that

the form of P(t) is approximately exponential. This thesis

attempts to establish values of <x and p, as function of R,A

and D, to allow equation (3.1) to be a reasonable estimate.
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1 . Submodel for ex

In our model, we know that the target starting posi-

tion is uniformly distributed over the search area A, and

the searcher has a detection capability over a disk which

covers an area Hp 2 with probabilty 1. So, «2 may expect

that at the beginning of the search, i.e., when t=0, detec-

tion probability will be egual to TTR 2 /A.

If we subsititute t=0 in equation (3.1), we get

P(0)= 1-oc

Then

F(t = 0)=-
HR*

A
= 1- c* (3.2)

which implies that

<x = 1— rriv
(3.3)

2. Submodel for ft

This submodel will include all independent variables

E,D,A and t, and will therefore be more complex. We will

study each independent variable separately in order to

simplify the problem (He will change one variable while

holding the others fixed.) The relationship between ft and

these variables will be estimated. Eventually we will

combine these submodels for a final submodel.

a. The Relationship Between Diffusing Constant D

and p

For this case, area size A and ralius R were

held fixed at 10000 nm 2 10 nm. respectively. Diffusion

constant D was varied between 20 nm2 /hr and 303 nm 2/hr The

Simula lion results are disDlayed in Figures 3.2.

27



By using the least squares estimation method on

ln[ 1-P(t) ] data values, a best fit p was obtained for each

diffusion constant D.

These B values are plotted against the corre-

sponding D values in Figure 3.4. They fall appcD ximately on

a straight line. Again, by using the least square estima-

tion method, the following linear equation was obtained

£ =0.00303+0.000205 D (3.4)

28
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t. The Relationship Between Area Size A and ft

This time the diffusion constant D ai d detection

radius R were held at 100 nm 2/hr and 10 nm respectively.

The area size A was varied between 1000nm 2 and 20000 nm2 .

The simulation results and the least square estimation

results for the log transformed data values are d isplayed in

Figure 3.5 and and Table II

Figure 3.6 shows a plot of the best fit g

against area size A. These points fit very closely with the

power function

J3
=0.77A-i-*9

(A least squares procedure on the log transf orn ed data was

used to determine the values 0.77 and -1.49). To achieve

more natural final units, the model is modified slightly as

follows

;

P =0.77A-i-s (3.5)
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c. The Relationship Between Detection Radius R and

Again, the same procedures were applied for this

case. R was varied between 1 and 30 nm, while D and A were

held fixed at 100 nm 2/hr and10000 nm 2 respectively.

The simulation results and least sgiare estima-

tion results are displayed in Figure 3.7 and Table III. In

Figure 3.8, the scatter plot of estimated £> vaL ues shows a

linear relationship between R and p.

Least square estimation for this lin2 is

P»
=-0.00105+0. 00278R (3.6)

pes 0.00278R
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We can summarize these observations is follows:

P o^ D

^o. A -W

£* E

where "«" means "is proportional to" wuich suggssts that

P—fr-
for the proper value of K. To estimate K is the final model

building step.

d. Estimation of the Coefficient K

We can calculate the K value for each simulation

with the expression

PKS

«=Hw- (3 - S)

where ^ is the "best fit" value for that similation run.

Then with these sample K values we may find best overall

estimate.

In addition to 56 simulations already completed,

25 additional simulations were conducted to produce a total

of 81 sample K values. The histogram and the statistical

table values for this data are displayed in Figure 3.9.
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If v e recall the equation (2,1), (3.3) and (5.7)

P ( t ) - 1 - U e

ttR 2

a = 1 -

6 - K
RD

A 1.5

Substituting these oc and £ values In equation

(3.1), we derived our final analytical model for first

detection probabilities as follows

P(t) - 1 - (1 - —J1~-) e"
K ~^r Z

(3-9)

where P (t) refers to tha probability of first detection

occurs on or before tire t.

D. VERIFICATION OF THE MODEL

1 . Dimension Analysis

From equation (3.9) we see that

KRDt
A J.s

must be dimensionless. This implies that the coefficient K

must be dimensionless. (If we had set the power of A to

1.49 versus 1.5, then the dimension of K would be nm°-2 , not

a natural unit.)
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2. Sensitivity Analysi. s for Indegendent Variables

If ve hold fixed all independent variables R,D,t and

change the area size A, we will observe that as we increase

the A, the probability of detection decreases and vice

versa. This result is demonstrated in Figure 3. 10. As we

increase the size of the search area, more area will be

available for the target to escape from the searcher.

Therefore we may expect lower detection probabilities for

larger search area sizes.

A similar sensitivity analysis is applied for the

other indepenlent variables K,D and t. If we look at the

results displayed in Figure 3.10, we may observe that as we

increase these variables, the detection probabilities

increase simultaneously. These results seem reasonable,

because as we increase the searcn time or detection radius,

we may have more chanses to detect the target. Also an

increase in the D value means that the target will travel

more distance during any time interval and will thus be more

likely to enter the detection disk.
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3. Final Verification

There was no actual data available iron real life

observations. Therefore, the output of DIFSIK is used for

final verification of the model. For this purpose, combina-

tions of the following independent variables were used both

in our analytical model and as input to DIFSIM.

D= 40, 80, 140, 200 Nm*2/Hr

E= 2.5, 10, 20, 25 Nm

A= 4000, 8000, 12000, 16000 Nm*2

The outputs are displayed in Figure 3, ,1 1 , 3.12,

3.13. It is observed that the simulation and model prob-

abilities are generally very close to each other. Only

during early search hours do the simulation curves sometimes

go above the model curve. This means that our model

predicts fewer detection than the diffusion simulation model

during the early search hours. Since this difference is at

maximum .03 or .04, we conclude that the model provides a

good fit, which gets better for larger time t. For small

t,the model appears to underestimate the proa ability of

detection.
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For the coctl presented here, the instant ai:c ou r. ratt

t < .- c t i o i- i s the coi! :-: t -:. v, t

e = k
RD

The fact that the DIFSIfi probability of detection by time t

generally exceeds that predicted by the nod^l suggests that

the instantaneous probability of detection produced by

DIFSIM exceeds (at least in early hours of the simula-

tion). To test this hypothesis, DIFSItt was run with the

parameters

D=100 nm 2 /hr

K=10 DG

A=10000 nm2

Then for each 5 hour period between and 00 hours, the

least squares best fit was obtained. (That is, the

fitting

est

1 - (1 -
ttR'

) e
-et

was calculated). These values are plotted in Figure 3.14,

and appear to approach from above the model value of

24. 7 x 100 x 10

10000
= .0247

Thus, in this case at least, it appears that the instanta-

neous probability of detection starts at some high value and

decreases asymptotically to a steady state value given by

49



the model presented here. This observation remains to be

proved in general.
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IV. PROBABILISTIC ANALYSIS OF THE KODL'L

A. CUMULATIVE DETECTION PROBABILITY FUiXTION

Since the following properties for general cumulative

proLability function hold for our mathematical "Ddtl, equa-

tion (3.9), we may assume that this model also represents a

cumulative density function (cdf) for first detection tiiue

t.

These properties are

1. Lim F(t) = 1

t— > °^

Lim F(t)= Lim

t—>oo {-

-1-(l-#l0- 1

RD

^-¥Y K -'

2.F(t) is a con deer easing function

If we take the the first derivate of F(t) with

respect to t, we get

dF(t) _/ K
RD 1- ttR' -K-

RD

dt 1.5
1,1 ^

since this equation always has nornegativs values, we

may assume that F (t) is a nondecr easing function.

3. F (t) is a continuous function.

Therefore we may define cdf as following.
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F(t)= P(T<t) = P (Detection a; * tire t)

F(t) - 3- (1- - i R ' N - K__) e
A (A. 1)

B. DETECTION TFOCAEILITY DENSITY FUNCTION

"e can derive the detection probability density iunction

(pdf), f (t) , Ly taking the first derivative of cdf with

resject to tice t.

fft) =
JRt)

dr

= K
80

A1.5

i

A
(4.2)

If we integrate this function from to <=>o we have

oo

fft)*#^J(l-^e
K-»*'dt

= /-
A

£>0

= 11-^-/^1
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Since this integration is not equal to 1, the elation (4-2)

doesn't represent a proper density function for t.

C. EXPECTED FIRST DETECTION TIME

Let F (t) denote the cumulative nondetection j-robaljj.j.ity

function (cndf ) .

F(t) = P(No detection up to time t) = p (T>t)

= 1-P(T^t) =1-F(t)

F(«= I-
rrfr \

A

HOr«^i
(4.1)

The following formula can be used to find the expected

detection time E[T]-

E[I]= /P(t) dt

o

If we substitute (4.3) in (4.4)

A
,s

i. rrf?
2

\ (MQ. e
-

(4.4)

HO
rrR

2
\ (Ml p""Kl^*jt

A i.s

KKO
1-

rr-R-

A -e

a'-
5

/, aR"
K«,0-

r.

(4.s)
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Expected first detection times are displayed for

different diffusion constants (D) , area sizes (Ai and detec-

tion radiuses (E) in Figure 4. 1.

D. CONDITIONAL DETECTION PBOBAEILITY FUNCTIONS

If we assume that there will be no detection at the

beginning of the search period, we may derive tue following

conditional cdf.

F (t) =P (Detection up to time t/no det. at time 0)

P[T>0]

_PL0<T,il_
(

P[T>0]

If we substitute t=0 in equation (4.3), we get

- 1TR7,

P(T>0) = F (0)= (1~7p-) (4-7)

and

P (0<T$t) = F (t) -P (t=0)

By using (4.7) and (4.8) as a dominator and numerator in the

equation (4.6) , we have
k- £ D

4-

F.tO= f- e~
K^ *
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This function (4.S) represents a cumulative probability

function of an exponential distribution with parameter
R Pi

K -rjs . By using this fact, conditional expected first

detection time E[T ] can be defined as follows:

A1
'*"

E[ T ]=E[ r/No detection at time ]= K p p (<*-10)

Also, we can write conditional detection probability density

function f (t) in the following form,

f.«).K-gk e^* (4. /i)

If we compare equations (4.5) and (4.13) , we will

observe that,

KftD KO v KRO

so E[T]<E[T ]. This inequality means that the conditional

first detection time is greater than the unconditional first

detection time. We can gat this conclusion intuitively by

thinking that we have an opportunity to detect the target at

the beginning of the search period in the unconditional

case. Therefore, for the unconditional case, we may expect

an earlier first detection time than would be possible for

the conditional case.
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7. THE RESULTS AND APPLICATIONS OF THE MODEL

A. EXPECTED DETECTION TIME FOE RANDOM TOUR MODEL

As we showed in Chapter II, a diffusion target gives an

upper bound detection probability for the "equivalent"

random tour model. Therefore, the diffusion model expected

detection time, which is estimated by equation (4.5) should

be a lower bound for random tour expected detection time.

That is, for

E[

T

]=Diffusion Model Expected Detection Time, and

E[ T
R
]=Random Tour Model Expected Detection Time, we

have

A
,? A 5

fTR

B. ONE-DIHENSIONAL DIFFUSION MODEL

In this thesis, two-dimensional diffusion motion was the

basis for our model. The exponential type curves were used

to estimate this model's outputs. In addition to this

model, the one-di mensional diffusion model is simulated by

computer program DIFSIM1. In this model, the target moves on

a line segment L, according to diffusion constant D. The

target's starting position is selected uniformly over this

line segment L. Detection occurs whenever the target hits

the designated end point. The target reflects off the ether

end point of line segment.

The results of different simulation results are

displayed in Figure 5.1. Exponential curves, which were

obtained by using the least squares estimation method, were
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used to estimate the outputs of one-dimensioni 1 diffusion

model as we did for two-dimensional case.

So we Da/ expect tnat, for three or mora dimensional

diffusion models, we may use exponential type curves which

are generated by a different set of parameters. For three-

dimensional case, these parameters can be defined as

follows:

V=Volume of the cubical search space.

R=Radius of the cookie-cutter detection sphere.

D=Diffusion constant.

T=Detection time.

C. APPLICATIONS OF IHE MODEL

Our model can also be used to estimate the final detec-

tion probability of a system which includes more than one

independent sensor. As an example, we may use the following

scenario

:

Ke want to use n sonobouys in order to detect a

diffusing target in an area A. Each sonobouy has a

cookie_cutter detection capability over a disk with radius R;

Each sonobouy will be independetly located oq the center

of a square subsearch area A; and operated for a time period

t. If we make the following assumptions, we may use equa-

tion (3.9) to estimate the overall detection probability of

this sonobouy pattern at the end of the search period t.

'- GM
I3|

n

where R is the effective detection radius.
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This zonula also gives us an upper bound detection

probability for a random tour aodel which moves in the same

system.
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APPENDIX A

DIFSIM COMPUTER PROGRAM

In order to give access to tne logic used in building

the simulation models DIFSIM and DIFSItfl, a compLete program

listing is included in this Appendix following the list of

variables used in the simulation models.

LIST OF VARIABLES

REP =Number of replications.

MAX =Detection period as a minute.

E =Radius of detection disk in nautical miles.

DIF =Diffusion constant D in square nautical miles per

hour

.

SIDE=The length of the square search area side in

nautical miles.

AREA=Area size A in square nautical miles.

INC =Time increment t for each discrete stap in

minute s.

PROB=Probability of detection

POSX=X component of target position.

POSY=Y component of target position.

DIST=The distance between the target location and the

center of the detection disk.

1X1 =Seed number for uniform random number.

1x2 =Seed number for standard normal random variable.
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